An efficient first-scan method for label-equivalence-based labeling algorithms
نویسندگان
چکیده
Label-equivalence-based connected-component labeling algorithms complete labeling in two or more raster scans. In the first scan, each foreground pixel is assigned a provisional label, and label equivalences between provisional labels are recorded. For doing this task, all conventional algorithms use the same mask that consists of four processed neighbor pixels to process every foreground pixel. This paper presents a simple yet efficient first-scan method for label-equivalence-based labeling algorithms. In our method, foreground pixels following a background pixel and those following a foreground pixel are processed in a different way. By use of this idea, the pixel followed by the current foreground pixel can be removed from the mask. In other words, the mask used in our method consists of three processed neighbor pixels. Thus, for processing a foreground pixel, the average number of times for checking the processed neighbor pixels in the first scan is reduced from 2.25 to 1.75. Because the current foreground pixel following a background pixel or a foreground pixel can be known without any additional computing cost, our method is efficient for any image that contains at least one foreground pixel. Experimental results demonstrated that our method is effective for improving the efficiency of label-equivalence-based labeling algorithms. 2009 Published by Elsevier B.V.
منابع مشابه
A Run-Based One-and-a-Half-Scan Connected-Component Labeling Algorithm
This paper presents a runand label-equivalence-based one-and-a-half-scan algorithm for labeling connected components in a binary image. Major di®erences between our algorithm and conventional label-equivalence-based algorithms are: (1) all conventional label-equivalencebased algorithms scan all pixels in the given image at least twice, whereas our algorithm scans background pixels once and obje...
متن کاملEfficient Parallel Connected Components Labeling with a Coarse-to-fine Strategy
This paper proposes a new parallel approach to solve connected components on a 2D binary image implemented with CUDA. We employ the following strategies to accelerate neighborhood exploration after dividing an input image into independent blocks. In the local labeling stage, a coarse-labeling algorithm, including row-column connection and label-equivalence list unification, is applied first to ...
متن کاملConnected component labeling on a 2D grid using CUDA
Connected component labeling is an important but computationally expensive operation required in many fields of research. The goal in the present work is to label connected components on a 2D binary map. Two different iterative algorithms for doing this task are presented. The first algorithm (Row–Col Unify) is based upon the directional propagation labeling, whereas the second algorithm uses t...
متن کاملFast Parallel Connected Component Labeling Algorithms Using Cuda Based on 8-directional Label Selection
Connected component labeling (CCL) is a key step in image segmentation where foreground pixels are extracted and labeled. Sequential CCL is a computationally expensive operation and thus is often done within parallel processing framework to reduce execution time. Various parallel CCL methods have been proposed in the literature. Among them NSZ label equivalence (NSZ-LE) method seemed to perform...
متن کاملA Novel Intrusion Detection Systems based on Genetic Algorithms-suggested Features by the Means of Different Permutations of Labels’ Orders
Intrusion detection systems (IDS) by exploiting Machine learning techniques are able to diagnose attack traffics behaviors. Because of relatively large numbers of features in IDS standard benchmark dataset, like KDD CUP 99 and NSL_KDD, features selection methods play an important role. Optimization algorithms like Genetic algorithms (GA) are capable of finding near-optimum combination of the fe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Pattern Recognition Letters
دوره 31 شماره
صفحات -
تاریخ انتشار 2010